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Abstract. Using first-principles density functional calculations, the effect of high pressures, up to 20 GPa,
on the structural and elastic properties of Zr2AlX and Ti2AlX, with X = C and N, were studied by
means of the pseudo-potential plane-waves method. Calculations were performed within the local density
approximation to the exchange-correlation approximation energy. The lattice constants and the internal
parameters are in agreement with the available results. The elastic constants and their pressure dependence
are calculated using the static finite strain technique. We derived the bulk and shear moduli, Young’s
moduli and Poisson’s ratio for ideal polycrystalline Zr2AlX and Ti2AlX aggregates. We estimated the
Debye temperature of Zr2AlX and Ti2AlX from the average sound velocity. This is the first quantitative
theoretical prediction of the elastic properties of Zr2AlC, Zr2AlN and Ti2AlN compounds, and it still
awaits experimental confirmation.

PACS. 71.15.Mb Density functional theory, local density approximation, gradient and other corrections –
62.20.Dc Elasticity, elastic constants – 74.62.Fj Pressure effects

1 Introduction

Recently, it has become possible to compute with great ac-
curacy an important number of electronic and structural
parameters of solids from first-principles calculations. This
kind of development in computer simulations has opened
many interesting and exciting possibilities in condensed
matter studies. For example, it is now possible to explain
and predict properties of solids which were previously in-
accessible to experiments.

Nowadays, M2AX phases, where M is an early transi-
tion metal, A is a group IIIA or IVA element, and X is
either C or N, attract more and more attention due to
their unusual properties. They exhibit materials proper-
ties that are associated with both metals and ceramics (for
details see [1] and the references cited therein). Like met-
als, they are electrically and thermally conductive, not
susceptible to thermal shock, plastic at high tempera-
ture and exceptionally damage tolerant, and most read-
ily machinable. Like ceramics, they are elastically rigid,
lightweight, creep and fatigue resistant and maintain their
strengths to high temperatures [2–12]. This makes them
attractive for many applications such as structural mate-
rials at elevated temperature. Up to now, more than 50
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M2AX phases have been discovered, among them there
are some M2AlX phases.

The M2AlX phases with M = (Ti, V, Cr, Nb, Ta)
and X = (N, C) have been experimentally and theoret-
ically extensively studied [1–25]. However, there are few
studies on Zr2AlX [26]. The elastic constants are among
the properties which are not yet calculated or measured
for Zr2AlC, Zr2AlC and Ti2AlN compounds. Moreover, it
seems that there are no studies about the strain effect on
the structural properties of Zr2AlX compounds.

Elastic properties of solids are closely related to many
fundamental solid-state properties, such as equation of
state (EOS), specific heat thermal expansion, Debye tem-
perature, Grüneisen parameter, melting point and many
others. From the elastic constants, one can obtain valu-
able information about the binding characteristics be-
tween adjacent atomic planes, the anisotropic character
of the bonding and the structural stability.

The behaviour of materials under compression based
on calculations or measurements has become an important
subject of study in the recent years as it provides insight
into the nature of the solid-state theories and determines
the values of fundamental parameters [27].

We therefore think that it is worthwhile to perform
calculations on the structural and elastic properties of
Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN under pressure
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using the ultra-soft pseudo-potential plane-waves (PP-
PW) method in order to provide reference data for the ex-
perimentalists and to complete existing theoretical works
on this fascinating class of materials. To judge the relia-
bility and accuracy of our predicted results for Zr2AlN,
Zr2AlC and Ti2AlN, results of Ti2AlC are compared to
the available experimental results.

2 Computational methods

The first-principle calculations are performed by employ-
ing pseudo-potential plane- waves (PP-PW) approach
based on density functional theory (DFT) [28,29] and im-
plemented in the most recent version of CASTEP (Cam-
bridge Serial Total Energy Package) code [30]. The major
advantages of this approach are: the ease of computing
forces and stresses; good convergence control with respect
to all computational parameters; favourable scaling with
number of atoms in the system and the ability to per-
form fast calculations by neglecting core electrons. The
exchange-correlation potential is treated within the LDA,
developed by Ceperly and Alder and parameterized by
Perdew and Zunger [31,32]. Two parameters that affect
the accuracy of calculations are the kinetic energy cut-off
which determines the number of plane waves in the expan-
sion and the number of special k-points used for the Bril-
louin zone (BZ) integration. We performed convergence
with respect to BZ sampling and the size of the basis set.
Converged results were achieved with 9 × 9 × 2 special
k-points mesh [33]. The size of the basis set is given by
cut-off energy equal to 280 eV. Careful convergence tests
show that with these parameters relative energy converged
to better than 5×10−7 eV/atom, forces below 0.01 eV Å−1

and total stresses below 0.02 eV Å−3.

3 Results and discussion

3.1 Structural properties

Zr2AlX and Ti2AlX (X = C, N) compounds crystallize in
the Cr2AlCd crystal structure, with space group P63/mmc
(#194). Its unit cell contains two formula units. The X
atoms are positioned at the (0, 0, 0) positions, the Al
atoms at (1/3, 2/3, 3/4) and the four M (M = Zr, Ti)
atoms at (1/3, 2/3, z).The structure is thus defined by
two lattice parameters, a and c, and the internal structural
parameter, z. Figure 1 shows the unit cell of Zr2AlC as
a structural model for the crystalline structure of M2AX
phases (M = Zr, A = Al and X = C).

The method used to optimize the structural geometry
involves computation of the self-consistent total energy
of the system by solution of the Kohn-Sham equations,
the forces and stresses, using the Hellman-Feynman the-
orem, and the subsequent relaxation of the electrons, the
ions and the unit cell. The ions were relaxed until the
Hellman-Feynman forces were below 0.01 eV Å−1 and the
cell parameters were relaxed until total stresses were be-
low 0.02 GPa. The calculated lattice parameters, a0 and

Fig. 1. The unit cell of Zr2AlC.

c0, and the internal structural parameter z, for Zr2AlX
and Ti2AlX (X = C, N) as determined from geometry at
P = 0 GPa, are given in Table 1 together with the avail-
able results of other calculations and experimental data.
There is a reasonable agreement between our results and
those of the previous calculations and measurements. The
slight underestimation of the lattice constants of Ti2AlC
and Ti2AlN compared to the experimental ones is due to
the use of LDA which is known to underestimate the lat-
tice constants.

In order to show how the structural parameters under
pressure in these compounds behave, the equilibrium ge-
ometries of Zr2AlX and Ti2AlXunit cells were computed
at fixed values of applied hydrostatic pressure in the range
from 0 to 20 GPa with the step of 5 GPa, where, at each
pressure, a complete optimization for the structural pa-
rameters was performed. Note that it is assumed here
that no phase transformations occurred in these systems;
it was indeed reported that were no phase transformations
observed in Ti2AlN, Ti2AlC, V2AlC, Cr2AlC, Nb2AlC,
Nb2AlC and Zr2InC samples up to pressures ≈50 GPa [11,
25,34] by using a synchrotron radiation and a diamond-
anvil cell to measure the pressure dependency of the lat-
tice parameters of these compounds. Figure 2 plots the
variation of the relative changes of the lattice parame-
ters (a/a0, c/c0, c/a) and the internal parameter, z, ver-
sus applied hydrostatic pressure, P. We clearly observe
a quadratic dependence in all curves of these four com-
pounds in the considered range of pressure. The solid
curve is a quadratic least-squares fit. The values of the lin-
ear and quadratic pressure coefficients of a/a0, c/c0, c/a
and z for these compounds are given in Table 2. In all
cases, the contraction with pressure along the c-direction
is greater than along the a-direction. Similar results were
observed for Ti2AlC, Ti2AlN, Ti2AlV, Ti2AlCr, Ti2AlNb
and Ti2AlTa [11,25]. The main difference between the four
compounds, however, is obvious in the relative changes



A. Bouhemadou.et al.: Structural and elastic properties of Zr2AlX and Ti2AlX (X = C and N) under pressure effect 211

Table 1. Structural parameters of Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN at zero-pressure: lattice constants, a0 and c0, internal
parameter, z, bulk modulus, B0, and its pressure derivative, B′, along with the previous theoretical and experimental results.
The values of B0 and B′ are evaluated from the fitting of the pressure-volume data to an analytical equation of state.

Compound a0(Å) c0(Å) c0/a0 B0(GPa) B′ z
Zr2AlC

Present 3.26899 14.40815 4.40753 134 3.89 0.08646
Theory [26] 3.2104 14.2460 4.437 176.28 4.01 0.08693

Zr2AlN
Present 3.20753 14.16947 4.41757 156 3.97 0.08824
Theory [26] 3.2155 14.2134 4.420 177.10 4.32 0.08696

Ti2AlC
Expt. [10] 144
Expt. [24] 3.058 13.642 4.46108 0.085
Theory [24] 3.07 13.74 4.47557 164 4.6 0.0835
Expt. [11] 3.065 13.71 4.47308 186 4.0
Expt. [8] 3.04 13.60 4.47368

Ti2AlN
Present 2.9504 13.3954 4.54019 169 4.0 0.08515
Expt. [11] 2.986 13.60 4.55459 169 3.5
Expt. [24] 2.991 13.619 4.5533 0.085
Theory [24] 3.0 13.68 4.56 175 4.6 0.0854

in the c-direction. The relative changes in the a-direction
are almost indistinguishable. Along the c-direction Zr2AlN
(Ti2AlN) is less compressible than Zr2AlC (Ti2AlC), con-
sequently, the anisotropy is greater for the former than for
the latter. Another consequence is that the bulk modulus
of Zr2AlC (Ti2AlC) is slightly lower than that of Zr2AlN
(Ti2AlN).

Based on the fact that the compressibilities along the
a-direction for both Zr2AlN and Zr2AlC (Ti2AlN and
Ti2AlC) are quite similar, it is reasonable to assume that
the compressibility along the a-direction is dominated by
the Zr-Al (Ti-Al) bonds that are identical in both com-
pounds. Along the c-axis, on the other hand, the main dif-
ference between the two compounds must thus be traced
to the Zr-X (Ti-X) bonds. The c-lattice parameter of
Zr2AlN (Ti2AlN) is shorter than that in Zr2AlC (Ti2AlC)
(Tab. 1), then the Zr-C (Ti-C) bonds are weaker than Zr-
N (Ti-C) bonds.

The calculated total energies for different volumes of
the unit cell around the equilibrium cell volume V0 are
fitted to the Birch-Murnaghan equation [35]:
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with V0 = 133.34152 Å3, 126.24796 Å3, 106.77485 Å3 and
100.98513 Å3 for Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN
respectively, fixed at the value determined from the zero-
pressure data.We obtained, by least-squares fitting, the
bulk modulus B0 at zero pressure and its pressure deriva-
tive B′. These are listed in Table 1. The calculated bulk
modulus values using FP-LAPW method [26] for Zr2AlC

and Zr2AlN are slightly higher than our calculated ones.
These differences can be attributed to the fact that the
authors in reference [26] performed no relaxation of the
compressed structures. The obtained results for Ti2AlN
and Ti2AlC are in good agreement with the experimental
ones [10,11].

3.2 Elastic properties

It is well established that first principle studies based on
DFT can be used to obtain reliable elastic properties of in-
organic compounds [36,37]. Several methods are available
for computation of stiffness coefficients, but currently the
finite strain method seems to be most commonly used and
this one is used in the present work. In this approach, the
ground state structure is strained according to symmetry-
dependent strain patterns with varying amplitudes and
a subsequent computing of the stress tensor after a re-
optimization of the internal structure parameters, i.e. af-
ter a geometry optimization with fixed cell parameters.
The elastic stiffness coefficients are then the proportional-
ity coefficients relating the applied strain to the computed
stress, σij = Cijlmεlm. Due to the symmetry of the elas-
tic stiffness coefficients tensor

↔
C the binary notation Cpg

is used instead the quaternary one Cijlm. The connection
between binary and quaternary notation is made by re-
placing every two digits (ij) or (lm) by one digit p or
g: 11 → 1, 22 → 2, 33 → 3, 23 → 4, 31 → 5, 12 → 6.
Using the binary notation stress-strain relation become
σi = Cijεj. Both stress and strain have three tensile and
three shear components, giving six components in total.
The linear elastic stiffnesses, Cij , thus form a 6 × 6 sym-
metric matrix with a maximum of 21 different compo-
nents, such that σi = Cijεj for small stresses σ, and
strains, ε [8,39]. Any symmetry present in the struc-
ture may make some of these components equal and may



212 The European Physical Journal B

Table 2. Variation of the relative lattice parameters (a/a0, c/c0, c/a) and internal structural parameter (z) with pressure are
described by a quadratic polynomial. The calculated first- (α in 10−4 GPa−1) and second-order (β in 10−5 GPa−2) pressure
coefficients are listed below for Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN, along with the available experimental data.

Zr2AlN Zr2AlC Ti2AlN Ti2AlC
α β α β α β α β

a/a0

Present −20.1 1.7112 22.2 1.9924 −19.0 1.637 −18.8 1.0944
Expt. [11] −18.0 1.0 −11.08 1.0
c/c0

Present −21.5 2.0003 27.0 3.0971 −18.6 1.4301 −22.8 2.0069
Expt. [11] −19.0 0.9 −24.0 2.0
c/a −6.5865 1.2391 −21.2 4.6732 −17.95 0.9710 −18.0 3.9963
z 1.7589 −0.1766 2.4533 −0.2673 1.7896 −0.18 2.848 −0.2597

(a) (b)

Fig. 2. Pressure dependence of the relative lattice parameters (a/a0, c/c0, c/a) and internal structural parameter (z) for Zr2AlC,
Zr2AlN, Ti2AlC and Ti2AlN compounds. The solid lines are least-square fits of the data points to a quadratic polynomial. The
dashed lines are least-square fits of the experimental data points to a quadratic polynomial [11].

lets other components vanish. A hexagonal crystal has
six different symmetry elements (C11, C12, C13, C33, C44,
and C66), and only five of them are independent since
C66 = (C11 − C12)/2. Two different strain patterns, one
with non-zero first and fourth components, and another
with a non-zero third component, give stresses related to
all five independent elastic coefficients for the hexagonal
system [40–42]. Two positive and two negative amplitudes
were used for each strain component with the maximum
value of 0.3%, and then the elastic stiffness coefficients
were determined from a linear fit of the calculated stress
as a function of strain. One of the strain patterns reduces
the cell symmetry; in this case atomic positions were op-
timized until the forces were below 0.002 eV Å−1.

In Table 2, we listed the calculated values of the elas-
tic constants Cij . Note that the difference between C11

and C33 is comparatively small. From Tables 1 and 4, we
can see that the calculated value of the bulk modulus B0

from the elastic constants has nearly the same value as
the one obtained from the EOS fitting. This might be an
estimate of the reliability and accuracy of our calculated
elastic constants for Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN
compounds. We are not aware of any experimental data on
the elastic properties. Future experimental measurements
will test our calculated predictions.

Once the elastic constants are determined, we would
like to compare our results with experiments, or predict
what an experiment would yield for the elastic constants.
A problem arises when single crystal samples cannot be
obtained. Then it is not possible to measure the individual
elastic constants Cij . Instead, the isotropic bulk modulus
B and shear modulus G are determined [43]. These quan-
tities cannot in general be calculated directly from the
Cij , but we can use our values to place bounds on the
isotropic moduli. Reuss found lower bounds for all lat-
tices [44], while Voigt discovered upper bounds [45]. We
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Fig. 3. The calculated pressure-volume relations for Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN. The solid lines are given by the
Birch-Murnaghan equation of state with the parameters listed in Table 1.

Table 3. The calculated elastic constants, Cij (in GPa), and
the shear anisotropic factor, A, for Zr2AlC, Zr2AlN, Ti2AlC
and Ti2AlN.

Compound C11 C12 C13 C33 C44 C66 A

Zr2AlC 278 64 67 235 97 107 1.024
Zr2AlN 285 89 92 266 129 96 1.406
Ti2AlC
Present 307 58 63 284 118 125 1.015
Theory [23] 321 76 100 318 144 123 1.31
Ti2AlN 311 71 102 298 133 120 1.313

merely note that the width of the bounds on the shear
modulus is related to the anisotropy constant

A = 4C44/(C11 + C33 − 2C13). (2)

As A approaches unity the crystal becomes isotropic, and
the gap between the bounds vanishes. We also calculated
the Young’s modulus, E, and Poisson’s ratio which are
frequently measured for polycrystalline materials when in-
vestigating their hardness. These quantities are related to
the bulk modulus B and the shear modulus G by the fol-
lowing equations [46]

E = 9BG/(3B + G) (3)

ν = (3B − E)/(6B). (4)

The calculated shear anisotropic factors of Zr2AlC,
Zr2AlN, Ti2AlC and Ti2AlN are given in Table 3. For an
isotropic crystal, A is equal to 1, while any value smaller
or lager than 1 indicates anisotropy. The magnitude of
the deviation from 1 is a measure of the degree of elastic
anisotropy of the crystal. The deviation from 1 is larger

for Zr2AlN (Ti2AlN) compared to Zr2AlC (Ti2AlC). This
conclusion is in agreement with hydrostatic pressure effect
results. The calculated bulk and shear moduli for Ti2AlC
are in good agreement with the measured ones.

In the following paragraph we study the pres-
sure dependence of the elastic properties. In Fig-
ure 4, we present the variation of the elastic con-
stants (C11, C12, C13, C33, C44) and the bulk modulus B
of Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN with respect to
the variation of pressure. We observe a linear dependence
in all curves of these compounds in the considered range
of pressure. In Table 5, we listed the results of the pres-
sure derivatives ∂C11/∂P , ∂C12/∂P , ∂C13/∂P , ∂C33/∂P ,
∂C44/∂P and ∂B/∂P for the four considered compounds.
It is easy to observe that the elastic constants Cij and
bulk modulus B increase when the pressure is enhanced
in these four compounds. To our knowledge no experimen-
tal or theoretical data for the pressure derivative of elas-
tic constants of Zr2AlC, Zr2AlN Ti2AlC and Ti2AlN are
mentioned in the literature. Then, our results can provide
reference data for future investigations.

3.3 Calculation of Debye temperature

We estimated the Debye temperature (θD) of Zr2AlC and
Zr2AlN from the averaged sound velocity, νm, using the
following equation [23,48]:

θD =
h

kB

[
3n

4πVa

]1/3

vm (5)

where h is Plank’s constant, kB Boltzmann’s constant and
Va the atomic volume. The average sound velocity in the
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(a) (b)

Fig. 4. The calculated pressure dependence of the elastic constants (C11, C12, C13, C33 and C44) and the bulk modulus (B) for
Zr2AlC, Zr2AlN4, Ti2AlC and Ti2AlN compounds.

Table 4. The calculated shear moduli (in GPa), GR, GV ,
and G = (GR + GV )/2, bulk moduli (in GPa), BV , BR, and
B = (BR + BV )/2 and Young’s modulus (in GPa), E, for
Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN, along with the available
experimental and theoretical data.

Compound BR BV B GR GV G E ν

Zr2AlC 131.2 131.9 131.6 99.2 99.7 99.5 238.4 0.1981
Zr2AlN 153.4 153.6 153.5 106.2 108.7 107.0 260.6 0.2171
Ti2AlC
Present 140.6 140.7 141 119.2 119.3 119 279 0.1686
Expt. [10] 144 118 227 0.19
Theory [23] 163.9 168.0 166 127.4 127.8 127.6
Ti2AlN 163.2 163.3 163 118.3 108.7 114 276 0.2177

polycrystalline material is given by [23,48]:

νm =
[
1
3

(
2
ν3

t

+
1
ν3

l

)]−1/3

(6)

where νl and νt are the longitudinal and transverse sound
velocity obtained using the shear modulus G and the bulk
modulus B from Navier’s equation [23,46]:

νl =
(

3B + 4G

3ρ

)1/2

and νt =
(

G

ρ

)1/2

. (7)

The calculated sound velocity and Debye temperature
as well as the density for Zr2AlC, Zr2AlN, Ti2AlC and
Ti2AlN are given in Table 6. Unfortunately, as far as we
know, there are no data available related to these prop-
erties in the literature for Zr2AlC and Zr2AlN. Future
experimental work will testify our calculated results. For
Ti2AlC and Ti2AlN, the calculated Debye temperatures
are in good agreement with the experimental ones. This

Table 5. The calculated pressure derivatives of the elastic
moduli for Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN compounds.

Compound ∂B
∂P

∂C11
∂P

∂C33
∂P

∂C44
∂P

∂C12
∂P

∂C13
∂P

Zr2AlC 3.74 3.98 5.28 1.5 3.26 3.38
Zr2AlN 3.48 4.02 4.10 1.54 3.04 3.36
Ti2AlC 3.95 5.75 5.4 2.5 2.95 3.2
Ti2AlN 4.3 6.4 6.1 2.8 2.3 3.9

Table 6. The calculated density (ρ in g/cm3), the longitudi-
nal, transverse and average sound velocity (νl, νt, νm in m/s)
calculated from polycrystalline elastic modulus, and the De-
bye temperatures (θD in K) calculated from the average sound
velocity for Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN compounds,
along with the available experimental and theoretical data.

Compound ρ νl νt νm θD

Zr2AlC 5.56 6891 4228 4667 544
Zr2AlN 5.88 7000 4268 4720 561
Ti2AlC
Present 4.25 8400 5303 5836 733

Expt. [10] 4.1 8525 5298 732
Expt. [12] 672

Theory [23] 4.03 9133 5627 6209 770
Ti2AlN
Present 4.496 8365 5025 5558 711

Expt. [12] 679

good agreement between calculated and experimental De-
bye temperatures is gratifying and support that our cal-
culations are reliable and accurate.
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4 Conclusions

Employing PP-PW approach based on density functional
theory, within the local density approximation, we studied
the structural and elastic properties of Zr2AlC Zr2AlN,
Ti2AlC and Ti2AlN compounds under pressure effect. A
summary of our results follows.

(i) The calculated structural parameters at zero-
pressure are in agreement with the available data.

(ii) The pressure dependence of the relative lattice pa-
rameters (a/a0, c/c0, c/a) and internal structural pa-
rameter (z) fit a quadratic relation.

(iii) A numerical first-principles calculation of
the elastic constants was used to calculate
C11, C12, C13, C33, C44 and C66. We found a lin-
ear dependence of the bulk modulus and elastic
constants versus applied pressure.

(iv) We calculated the shear modulus G, Young’s modu-
lus E, and Poisson’s ratio ν, for ideal polycrystalline
Zr2AlX and Ti2AlX aggregates.

(v) We derived the sound velocity and the Debye temper-
ature for Zr2AlC, Zr2AlN, Ti2AlC and Ti2AlN com-
pounds.

The first author would like to express his sincere gratitude to
Dr. Claude Demangeat and Dr. Cyril Bourgogne from Institut
de Physique et Chimie des Matériaux de Strasbourg-France,
for their hospitality and computing facilities.
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